
Using the Modern Technology Stack
to Build a Scalable Web Application

by

Vladislav Podchufarov
Student ID: 2227032

MSc Computer Science

Supervisors: Ian Kenny, Mark Lee

School of Computer Science
University of Birmingham

September 2021

Table of Contents
Abstract 4
Project Idea and Objectives 5
Tech Stack review and Technical Challenges 6

Creating a Server-Side Rendered app with Next.js and React 6
Creating a Performant API with GraphQL and Apollo 7
Using Prisma to define the Data Models and provide access to the Database 8
Using TypeScript to enhance tooling and intellisense 8
Using AWS S3 for File Storage, and AWS RDS for Database Hosting 9
Scalable Deployment using Vercel and Digital Ocean 9
Using Figma to Design the Mockups 10

Functionality and UI/UX Design 11
Design Process 11
Browse Sketches 12
View Sketch 12
Auth System 13
Edit Sketch 13

Backend 14
Project Structure Overview 14
Setting up GraphQL Server with Apollo, Nexus, and Prisma 15
Designing the Database and creating it using Prisma 17
Search and Filtering 18
Ranking the Posts 19
Authentication System 20
Scalable Image Uploads 21

Frontend 23
Project Structure Overview 23
Setting up the project with Next.js and TypeScript 24
Apollo Set Up 24
Server-Side Rendering 26
How React Components Work (Modal Component Example) 27

Deployment 28
Frontend Server on Vercel 28
Backend API Server on DigitalOcean 29
PostgreSQL server with AWS RDS 30
Image Hosting with AWS S3 30

Evaluation 31
Performance 31
User Feedback 33

Conclusions 34
References 35

Appendix 40

Abstract
The aim of this project is to explore the process of full-stack web development using
the modern toolset, to investigate ways of integrating the latest web development
technologies in order to create a fast, interactive, and scalable online application that
can support many users, and to solve the challenges that come with building a
server-side-rendered React application with a GraphQL API.

To accomplish that, I wanted to design and build “Sketch Club” - an interactive and
easy to use web application that helps art students to regularly practice their drawing
skills. This application enables the students to share their artworks and browse the
artworks created by other people. It features a token-based authentication system, a
scalable image upload system integrated with AWS S3 using pre-signed urls, search
and filtering functionality that takes advantage of the Prisma ORM features, and a
performant GraphQL API built with Apollo.

The application was deployed using a scalable network architecture, published
online, tested and evaluated by the potential users.

In the process of building the app I have learned how to use Next.js, Apollo Client
and Server, GraphQL, Prisma, Nexus, AWS S3, AWS RDS, and Vercel.

Project Idea and Objectives
Sketch Club is a web application that helps art students to regularly practice their
drawing skills. Every week the students receive a new drawing task - they need to
create a sketch or design based on a particular subject. They can share their
sketches, gain inspiration from each other, and see how the other artists are
approaching a similar creative challenge. The application’s purpose is to motivate
people to draw more regularly and develop their skills faster.

The students are able to create an account using the authentication system, and
upload their artworks using a secure and scalable image upload system. The
artworks are organized by topic, enabling people to browse the sketches made on
any particular subject. Each student has a portfolio page showcasing their artworks,
where they can easily see the progress they’re making.

The project is designed and built using modern web development tools and
technologies. In recent years the advances in web technology have made it possible
to create extremely scalable, efficient, interactive single-page applications, but
understanding these technologies and combining them together into a complete
software product presents multiple interesting challenges.

My goal was to explore the state of the art approaches to solving these challenges,
deal with the issues that arise from combining several new technologies that are still
in early development, and gain a valuable skill set that will be very useful when it
comes to finding a job at a company that uses modern tech stack and needs people
capable of building complex software using these technologies.

The application was built using:

● Next.js to achieve server-side-rendering of an interactive React app (making it
more performant for the users and more discoverable by the search engines).

● GraphQL and Apollo to create a very performant API.

● Nexus to write more maintainable GraphQL code.

● Prisma to conveniently create, access, and modify the database.

● AWS S3 and pre-signed urls to achieve secure and fast image uploads.

● DigitalOcean, Vercel, and AWS RDS to achieve scalable network architecture
and inexpensive hosting.

● Figma was used to efficiently create the initial mockups and design (and to
explore the modern UI/UX design toolset).

In this report, you will find an overview of using each of these technologies in order to
create a fully functional software product from the initial idea to launch, the
challenges I have encountered during this process, the solutions I was able to find,
and all the most interesting ideas I have learned in the process.

Tech Stack review and Technical Challenges
In this section, you will find a list of technologies I have used to build this application,
the reasons for choosing these technologies, and the challenges I have encountered
in the process.

Creating a Server-Side Rendered app with Next.js and React
React.js is a JavaScript library for building rich and interactive user interfaces [1.1]. It
is extremely popular, powerful, and useful for creating interactive single-page
applications with a very flexible and responsive UI.

React’s main drawback is that the application is being rendered entirely in the
browser - the server sends you an empty html page and a javascript file, and after
the page has been loaded, javascript makes requests that fetch data from the server,
and only after the requests are resolved React is able to render UI components
based on this data. This results in two issues:

● While the app spends the time making requests and fetching the data, it
appears unresponsive to the user. It uses the loading spinners as
placeholders for the components, and is able to render the actual UI only after
the data has been fetched. That results in a frustrating and inconvenient user
experience.

● Because the app initially sends the empty html page, which is populated by
data only at a later point, it is difficult for the bots to parse and process it. That
creates significant disadvantages when it comes to search engine
optimization (Google is the only search engine capable of rendering the React
app in order to parse it), and creates difficulties with social media sharing
(Facebook, Twitter, and Discord cards do not work with client-side rendered
apps).

In order to solve these issues, we need Server-Side Rendering (SSR) [1.2]. SSR
enables us to create universal web apps - the app is being rendered on the server,
and sent to the browser only after it has been populated with data. That means that
as soon as the app has loaded, it becomes immediately interactive (no need for the
loading spinners), resulting in a snappier, more satisfying user experience. Search
engines have no problem parsing SSR apps (to them they look like any other
website), and don’t penalize your app. Social media sharing works as intended as
well.

In order to implement server-side rendering with React, I have used Next.js [1.3] - it
is a framework that was designed for creating SSR apps [1.4], and it also provides a
number of other features and benefits, such as folder-based routing, static page
generation, pre-fetching data, and automatic code splitting. In addition to those
features, it simplifies development and building processes (no need to set up
webpack config), and, later on, enables simpler and more scalable hosting (see the
sections below).

The biggest challenge with using Next.js arises from its main benefit - server-side
rendered apps are more difficult to write, as they require dealing with data fetching on
server as well as on client.

Also, it is relatively new, and requires quite a lot of exploration and research in order
to integrate it with the other technologies I am using.

Creating a Performant API with GraphQL and Apollo

GraphQL is a query language that enables extremely efficient API requests and data
fetching [1.5]. Unlike its predecessor (REST APIs), it enables front end web
applications to fetch the exact data they need, without overfetching or underfetching -
no bandwidth is being wasted on sending the data that is not getting used, and no
extra requests are being made to fetch that data that wasn’t sent by the API endpoint
[1.6].

GraphQL itself is just a specification, in order to use it in my app I need Apollo - a
library that provides GraphQL implementation for JavaScript applications [1.7]. Apollo
has server-side and client-side components. Apollo Server enables me to build a
GraphQL API endpoint that will serve the data to the client, and ApolloClient helps
me to access this endpoint from my React app, as well as provide a number of other
benefits and advantages (mainly the client-side data management and caching).

In order for Apollo Server to be able to create the GraphQL API, l needed to build a
schema containing the GraphQL type definitions [1.8]. There are multiple ways of
accomplishing that, but I found GraphQL Nexus to be the most convenient option
which provides multiple advantages - mainly end-to-end type safety, ability to split the
schema into multiple files, and to build the schema using JavaScript (instead of the
GraphQL’s schema definition language, which would require more boilerplate code
and context switching) [1.9].

Apollo, GraphQL, and Nexus are relatively new technologies (unlike REST APIs
which they are designed to replace), which introduces a lot of complexity to the web
development process. There’s a lack of learning resources and standard approaches
when it comes to integrating these technologies together into a web development
stack. Combining them with server-side-rendering and Next.js (see the previous
section) provides additional challenges and requires additional research. I needed to
explore the ways of combining these technologies with the other libraries in my stack,
and solve the issues that came up in the process.

Using Prisma to define the Data Models and provide access to the Database

Prisma provides object–relational mapping (ORM) - it helps the developer to create
models, generate database tables, and access the data without manually writing SQL
queries [1.10]. It enabled me to define the schema in a convenient and
human-readable format and use the automatic migration system to update my tables.
As a side benefit, Prisma comes with Prisma Studio [1.11] - a GUI for viewing and
editing the data in the database, which I found very useful and convenient.

Additionally, Prisma works well with PostgreSQL [1.12], which is preferable, in my
case, to non-relational databases such as MongoDB. Technically, either option would
have worked, but, due to the nature of the app I’m creating, I wanted to use a
database designed to work with relational data [1.13].

The main challenge of using Prisma is that the technology is very new, and is under
active development, which makes the research extra difficult, and requires a number
of creative workarounds in order to solve certain problems that have already been
solved with more established technologies (such as Mongoose). You will see one of
such workarounds in the section about ranking the posts based on their score and
submission date.

Using TypeScript to enhance tooling and intellisense

TypeScript is a superset of JavaScript, its main purpose is to provide static typing to
JavaScript apps [1.14]. It’s main advantage is that it helps the developer to catch
many bugs during the development process, as opposed to noticing them at runtime.
Once the programmer has defined the variable type, it can no longer be changed,
and the compiler will alert them of all the type-related errors during the build process
[1.16].

Another advantage of TypeScript is superior tooling - using it enables the editors
(such as VSCode) to provide auto-completion and intellisense - the code becomes
self-documenting and more convenient to write. It makes the code navigation easier,
and highlights errors in the IDE immediately, speeding up and simplifying the
development process [1.17].

The main challenge of using TypeScript is the learning curve of adopting a
technology that is somewhat unfamiliar to me. Luckily, since TypeScript is a superset
of JavaScript, it can be adopted gradually - it’s possible to access many of its
benefits while writing code that is mostly similar to regular JavaScript.

Because most of the advantages of TypeScript become more valuable and apparent
on larger-scale projects built by large teams of people, and I was working on a
relatively small one-person project, I did not find the strict typing particularly useful.
So I simply let TypeScript infer the types automatically - that way I was able to write
the code that is syntactically identical to JavaScript (which is more concise and
familiar), and yet gain all the IDE-related benefits such as enhanced intellisense and
documentation automatically. I did find both of those features extremely helpful.

Using AWS S3 for File Storage, and AWS RDS for Database Hosting

AWS [1.18] is the industry standard for cloud database and file storage. Since my
application requires scalable image uploads, AWS S3 is the obvious choice to go
with. I have learned to upload image files to S3 using the pre-signed urls, which
achieves very secure, scalable, and inexpensive image uploads.

AWS also provides a database hosting service called RDS [1.19], which is perfect for
storing my database - it is a well-established technology, it works great with
PostgreSQL, and it’s free. With all the other complexities and challenges involved in
my project, it was convenient to have the database hosting taken care of by a
standardized solution.

There are two significant challenges when it comes to using AWS. First one is using
the platform itself - its UI is complicated and unfamiliar to me, and requires
understanding of a number of new concepts (mostly related to users, roles,
permissions, and setting up the security-related features with AWS buckets).

The second challenge was figuring out the image upload process, which involves a
number of steps and can get quite complicated. I will go into this process in more
detail in the image upload section of this report.

Scalable Deployment using Vercel and Digital Ocean

Once the application is built, it has to be deployed on the web in a way that scales to
a large number of concurrent users, which presents a number of challenges.

The client side of my app is hosted using Vercel - a hosting platform designed
specifically for Next.js [1.20], which automatically provides many scalability-related
features, as well as Continuous Integration and Continuous Deployment, which make
the deployment process more convenient, enable rapid iteration and testing, and
prevent broken builds from being pushed to production.

Unfortunately, Vercel can only be used for serverless web apps, so in order to build a
scalable GraphQL API I needed to set up my own backend server on Digital Ocean
[1.21].

I am pretty familiar with the process of setting up my own server, but in order to
improve the security and make my app work over HTTPS, it was necessary to set up
SSL certificates. On top of that, a number of issues arose because my client and
server had to be hosted separately - solving the CORS errors and enabling the client
and server to communicate in production proved to be quite a challenge.

Using Figma to Design the Mockups

Last but not least, I needed to learn Figma for the UI/UX design and prototyping. It is
an extremely powerful and convenient tool for creating designs and mockups [1.22].
While it looks simple and easy to use, there are a number of things I had to learn in
order to use it effectively. Figma provides very powerful digital asset functionality
[1.23] and enables its users to create very flexible design systems and prototypes.
Since I’m relatively new to Figma (and web application design process in general),
mastering this workflow was extremely valuable, but a somewhat challenging skill to
learn.

And, of course, there are multiple challenges presented by the design process itself. I
wanted to create a design that is beautiful, elegant, and minimalistic. I wanted my
application to appear extremely simple and intuitive to the end user, but achieving
this simplicity required some clever ideas and design solutions on my part - I needed
to apply the principles of good UI and UX design to make the application easy and
enjoyable to use.

Functionality and UI/UX Design
My first task in building this project was to specify the key functionality and design the
mockups. To accomplish this task, I have learned Figma and its powerful asset
system. Its flexibility has enabled me to build the mockups quickly, and gradually
improve them until they have matched the vision of the app I’ve had in my mind.

My objective was to create a simple, beautiful, elegant, and minimalistic design.
Since this application is meant to be used by art students, I wanted to hide all the
technical complexity behind the simple and intuitive UI which even non-technical
people would be able to understand and use.

Design Process

I have researched similar websites, and attempted to adopt the most useful UI/UX
elements I could find.

● The color scheme is mainly inspired by Product Hunt.

● Sketch browsing and viewing functionality is inspired by Instagram.

● Sketch editing and image uploading functionality is inspired by ArtStation.

● The list of weekly challenges is inspired by ArtStation’s categories.

I have written down a list of key features this application will need, and attempted to
organize them in the most straightforward and intuitive way. I have designed four key
screens - Browse Posts, View Post, Create/Edit post, and Login Modal.

I have studied Figma’s asset and component system [2.1], as well as ways of
creating a design system in this tool [2.2].

For the purposes of a simple prototype I did not end up needing a full-fledged design
system (this approach is very powerful, but more applicable to larger scale projects
with dozens of screens), but I found it very helpful to create basic components of the
page - buttons, images, links, and so on.

I was able to use these elements to assemble the designs of multiple pages quickly,
and I was able to edit and change the styles with a lot of flexibility (since editing the
style of the parent asset automatically updates the designs of all it’s descendants).

Below you will find the key pages of the website, along with the list of features I
intended to build. In the pictures you can see the final look of the website - after
multiple iterations and tweaking. You will find the original Figma mockups in the
Appendix A. The Figma design project is available at [2.3].

Browse Sketches

● A grid of sketches submitted to today’s competition.
● A list of tags that can be used to filter the sketches by topic.
● Search bar that can be used to search by title, description, author or tag.

View Sketch

● View sketch images - image gallery, clicking on arrows switches the active
image.

● Sketch information - title, author, description, topic, and tags.

Auth System

● Join. Enter the username, email, and password, create an account.
● Login. Enter the email and password, log into the existing account.

Edit Sketch

● A page where you can upload a new sketch, or edit an existing one.
● Enter sketch title, description, topic.
● Upload images, delete images.
● Save and publish the sketch, delete sketch.

Backend
In this section I will describe the backend part of my project. I will show you an
overview of the files, explain how they fit together, and then give a more detailed
explanation of the most interesting parts.

Project Structure Overview

This is an overview of the project structure and the key files.

server.ts
This is the entry point to the backend application, the
first file that runs when the application is launched. It
uses the Apollo Server to create a functional GraphQL
API out of Nexus schema.

/apollo/context.ts
Apollo Context is imported in Queries and Mutations
files in order to provide access to Prisma inside of the
Queries and Mutations (which in turn gives me access
to the database and enables me to read and update the
data).

/nexus/nexusSchema.ts
Nexus schema combines all the Types, Queries, and
Mutations into one schema which can be processed by
the Apollo Server.

/nexus/shield.ts
GraphQL Shield is a tool that enables me to set up
permissions for the API endpoints, preventing
unauthorized access.

/prisma/schema.prisma
Prisma’s Schema file is used to establish the database
models and relations between them.

/config/nginx.conf
This file contains the Nginx configuration necessary to
serve the project in production.

To summarize - Apollo Server uses Nexus schema to create a GraphQL API. Nexus
Schema is made out of Queries, Types, and Mutations which use Prisma in their
resolvers to access data from the database. Queries and Mutations are protected by
GraphQL Shield from unauthorized access, and the whole thing is served with Nginx.

Setting up GraphQL Server with Apollo, Nexus, and Prisma

Apollo Server is responsible for creating the GraphQL API that the client can use to
fetch and modify the data.

There are multiple different implementations of the Apollo Server [3.1]. I chose
‘apollo-server-express’, an integration of Apollo with Express.js - a popular Node.js
framework for building web applications. It was a convenient choice, because it
provides certain functionality that the regular ‘apollo-server’ package doesn’t -
specifically, it can be easily integrated with the ‘cookieParser’ middleware, which I
need to use in order to process the authentication cookies (more on that in the
Authentication section).

Apollo Server builds a GraphQL API using Nexus schema [3.2]. Nexus is a
JavaScript library which enables developers to create a GraphQL schema using
JavaScript code, as opposed to using GraphQLs schema definition language [3.3]
(more on benefits of Nexus in Tech Stack Review section).

In the ‘/nexus’ folder you see multiple files containing Types, Queries, and Mutations
for various models - Images, Posts, and Users.

Types describe the shape of the data in a way that GraphQL is able to understand - I
can list the fields the client will be able to access (such as post title, body, tags, and
so on) [3.4]. I can also describe ways in which the client can access related models -
for example, the User type has the ‘posts’ field, which enables me to easily access all
the posts created by the user.

Queries and Mutations are the “entry points” into GraphQL, they provide ways to
access and modify the data [3.5]. Both Queries and Mutations have resolvers - the
JavaScript functions that request and modify the data in the database [3.6].

Nexus queries have clearly defined input and output types, which is good for type
safety - a very effective way to safeguard the application that is helpful for catching
and eliminating the errors during development [3.7].

For example, the ‘post’ query accepts a post slug (a part of the url that uniquely
defines the post) as its argument, uses Prisma to find the post in the database by this
slug, and then returns the data of the type ‘Post’, which is defined in ‘postTypes.tsx’
and contains all the fields the client may need to request.

Inside the resolvers, you can see Prisma functions being executed. Prisma is the
ORM that gives me the ability to actually access and modify the data in the database.

Think of it as an easier and more convenient alternative to manually writing the SQL
queries [3.8].

In order to set up Prisma, I needed to define its schema in the ‘schema.prisma’ file
(more on that in the Database Design section), and pass it the environment variables
that describe how to connect to the PostgreSQL database. To be able to actually use
Prisma in the resolvers to query and modify the database, I needed to configure
apollo context (/apollo/context.ts), which provides access to Prisma’s functions inside
of the resolvers.

One last step was establishing the permissions - some of the endpoints needed to be
protected from unauthorized access (for example, I needed to make sure that only
the post’s author is able to edit or delete the post, and only logged in users can vote
on posts). To accomplish that, I have used GraphQL Shield - a library designed to
simplify creating the permission layer for the application [3.9].

GraphQL Shield enables me to list all the Queries and Mutations I want to protect,
and pass a function to each one - if the function returns true, the request is allowed to
complete, otherwise, the user receives a permission error.

These functions are called “rules”, and they determine the user’s permissions based
on the custom logic I wrote, for example - extracting the authentication token from the
cookies to determine whether the user is logged in, and finding them in the database
to make sure that they are the post’s author.

Everything I have described above achieved one important goal - the creation of a
flexible and powerful GraphQL API my client is able to use to fetch and modify the
data in the database.

With that complete, I was able to begin working on the actual functionality. In the
sections below, I will highlight the most interesting parts of the backend code. They
all fit within this framework of Queries and Mutations using Prisma to manipulate the
database, but there are interesting details describing how it’s actually done that are
worth pointing out.

Designing the Database and creating it using Prisma

One the basic project set up was done, my tech stack was working, and I had
managed to make my client and server communicate successfully, the next step was
to design the database. I have created an ERD diagram to visualise the data I will
need to store, and relations between the tables:

My goal was to capture all the most important information while keeping the design
relatively simple.

Initially, Tags and Topics were the same entity, but after some experimentation and
tweaks to the design I have decided to refactor the code and separate them, because
topics needed to be sorted in the order in which they were created (so that I could
display the most recent topic at the beginning of the list), but logically it did not make
sense to have the creation date field on the tag model.

Also, at first the images were a part of the Post model (image urls were just stored as
an array in the Post table), but after further consideration I have decided to split them
off into their own entity, in case I needed to add some extra information to them later
on. Right now the only extra field they have is “Name” (image’s filename), but in the
future it would be possible to enable users to give more detailed descriptions to each
image, give credit to other artists if it’s a collaborative project, or even add a model
that stores videos, to enable people to share their drawing process.

Prisma’s Schema file was used to establish the database models and relations
between them. Prisma provides a straightforward and elegant way of doing that - I
was able to list my tables, fields that I want to have on each one, and use special
syntax to define one-to-many and many-to-many relationships as needed.

In the /prisma folder you can also see some helper files for seeding the data,
manually adding the weekly challenge topic from the terminal, and regularly
calculating the post ranking.

In order to seed the database with a lot of posts (as well as the initial demo users and
topics), I have created a file (seeddata.ts) with JSON objects containing all the
necessary information, and then wrote a script (seed.ts) which uses Prisma to
establish the connection to the database, loops through all the data, and creates the
necessary records in the database. This script also needed to hash the demo user’s
passwords (more on that in the Authentication section), and randomly assign posts to
them.

Search and Filtering

Most Queries and Mutations are pretty similar to each other. To get an example of
how they work, it’s worth taking a look at the ‘getPosts’ query (in the
‘/nexus/postQueries.ts’ file).

This query accepts a number of arguments (search string, tags, author’s username,
etc), and its resolver uses them to filter the posts, and return only the ones that
match a certain search query.

The filtering is done by using the Prisma query. First I build each individual part of the
filter, depending on which arguments have been passed to the query (for example,
filtering by tag will only occur if the client has requested such filtering), and then
these filters are combined into one object (allFilters), which is passed to Prisma.

The ability to work on each part of the query as a separate javascript object approach
provides a lot of power and flexibility, this kind of thing would be much more difficult
and confusing to do if I was writing plain SQL queries by hand.

Filtering, sorting, and pagination are combined into one Prisma query, and then a
separate query counts all the posts in the database that match the filter (knowing the
total number of posts is necessary to build a pagination pagination), and both of
these operations are combined into a single transaction. Finally, the object containing
all of the requested data (and, unlike the REST API would have worked, nothing
else) is returned from the resolver. The client will be able to use this object to render
the grid of posts, with pagination.

Ranking the Posts

The posts are ranked based on their score (how many upvotes the post has
received), and the submission date (the older the post, the lower it will be in the
rankings). I chose to use the Hacker News ranking algorithm [3.10], because it is
simple, well tested, and is a perfect fit for the sketching competition (ensuring that
everybody’s posts will be visible at the top of the page initially, and as the time
passes, the posts ranking will get closer to upvotes-based sorting, so the most
upvoted posts will be more prominent over time).

In order to sort the posts in such a way, I needed to add a “rank” field to the posts
model, and update it regularly with the recalculated rank.

I wrote a script (/prisma/updateRank.ts) which loops through all the posts in the
database, and uses their score and the submission data to calculate the updated
rank.

This script is being run every 5 minutes using a cron job. It was necessary for
efficiency reasons - as the database grows and users submit more and more posts,
calculating the ranks in real time (whenever the user requests a page) would take a
prohibitively long time. Updating the rank every 5 minutes is more than enough to
show people the up to date results, and at the same time, the database can sort the
posts based on the precalculated rank very quickly.

Authentication System

Building an authentication system was quite challenging, mostly because the
approach was unfamiliar to me. But the final result ended up being pretty
straightforward.

For authentication I have used JSON Web Tokens (JWT). JWT is a small piece of
data generated on the server and stored in the browser. It contains some information
about the user (in my case, user_id), which is signed by the server using a hashing
algorithm [3.11]. Hashing algorithm uses a secret string known only by the server,
and the information signed in such a way is guaranteed to have been created by my
server.

Once JWT is obtained, my client can simply send it along with every request that
requires authentication, my server will verify JWT’s integrity, and once it is confirmed
the client is granted access to the secure route.

Here’s how the process works:

1. When the user enters their email and password in order to sign up or log in,
they are sent to the server.

a. When the user is trying to sign up, we need to store their username
and password in the database. For security reasons, the password
can not be stored in a plain text form (which would expose it to the
potential attacker), so it is important to hash it (run it through a
one-way function that transforms it into a string of characters that can’t
be turned back into the password) before storing it in the database.

b. When the user is trying to log in, we compare the hashed version of
the password they've entered with the hash saved in the database. If
they match, it means that the password the user entered is correct.

2. The server generates the token and sends it back to the client. The client
uses cookies to save the token in the browser.

3. The client automatically sends the token along with every request. The server
verifies the integrity of the token to ensure that the token was generated by

my server, and grants the user permission to access the information behind
the protected routes.

In order to verify the token, I first needed to be able to pass it from client to server on
every request - Apollo Client (on the frontend) was set up in such a way as to get the
“Authorization” cookie, and pass it along with the other headers [3.12].

On the server, in the file shield.ts, the token is verified using the secret string of
characters, known only to the server, to confirm that the token was generated by my
server (and not by the potential attacker).

In the same file you will find a set of “rules” - functions that decide whether or not the
client can access a Query or a Mutation. These functions extract the user id from the
verified token, which enables me to determine whether the user is logged in, as well
as other information I need to determine which permissions the user should have
(such as whether or not the user is the post’s author).

Scalable Image Uploads

Multiple image upload options are available for a web application. Most common one
involves uploading an image to your own server, and storing it in it’s own file system.
The biggest problem with this approach is that it’s not scalable - this approach
doesn’t allow you to easily spin up multiple servers (since any particular image is
stored on a single one of them), and file storage/upload takes up a lot of space and
bandwidth, which costs a lot.

The common solution is to use AWS - an industry standard for scalable file storage.
People temporarily upload images to their own server when they submit the form,
and then the server uploads the image to the database, storing only the image url in
the database. This solves the problem of scalable storage, but the server’s resources
are still being used during the image upload process (from the client to the server
and from the server to AWS).

The best approach would be to send the image files from the client directly to AWS,
without them ever touching my own server [3.15]. But in that situation, the challenge
is keeping the image uploads secure - we don’t want anyone on the internet to be
able to use our AWS servers for their file storage, and securing the file upload from
client is more convoluted than just uploading it from the server (which we can
assume is secure by default). But the benefits of cheaper and more scalable image
storage outweigh the cost of complexity, so I have decided to implement this
approach.

In order to upload the images securely, I am making use of so-called “Pre-Signed
URLs” [3.14]. A Pre-Signed URL is generated by AWS, and can only be used once,
for a file with specific name and type. If the URL isn’t being used immediately, it
expires within seconds. This approach provides security - a unique url is generated
for each and every file upload, which guarantees that only I know the URL that can
be used to upload a file to my AWS bucket.

Here’s how the process looks like [3.13]:

1. When the user wants to upload an image, the client asks the server to request a
secure Pre-Signed URL from AWS.

2. The server tells AWS the name and type of the file I want to upload.

3. AWS generates the URL that will work only for uploading the file with this specific
name and type, and sends it to my server.

4. My server returns this url to my client.

5. My client sends the file (using a POST request) directly to this URL. Notice that the
file is being uploaded from the user’s browser directly to the AWS server, not wasting
the expensive storage or bandwidth of my own server.

6. Finally, I save the post (that simply contains a link to the uploaded file) to my
database.

In addition to this process, I have also used a ‘react-image-file-resizer’ library [3.16]
to automatically resize the images and convert them into a modern file format (webp)
directly in the user’s browser, saving space and bandwidth, and resulting in faster
loading times. You can see the process of resizing the image in the
‘utils/resizeImage.ts’ file on the client.

Frontend
In this section I will provide an overview of my frontend project structure. I will
describe the most important files, explain how the technologies I’m using fit together,
and discuss the most interesting and relevant aspects of my code.

Project Structure Overview

/pages/
This folder is created by Next.js to set up file-based routing.
Every file in it establishes a unique page on the website.

/pages/_app.tsx
This is the entry point into the app, a wrapper around all the
other components (which will be rendered inside it). It wraps
everything in Apollo Provider, which gives the components
access to information fetched by Apollo.

/apollo/
Apollo Client is responsible for fetching the information from
the server. It allows me to run GraphQL Queries and
Mutations that request and modify the data.

/components/
All elements of the app are broken down into nested
components, organized into folders based on their purpose.

/context/
React Context is a way to make certain data available to all
the components in the component tree (such as a username
of the authenticated user).

/hooks/
Hooks provide a way to use state (and many other features)
in functional components. They’re a modern alternative to
React’s Class Components, they enable me to write cleaner,
more concise code that better follows the “DRY” principle.

/styles/
This folder contains all the SCSS styles responsible for the visual appearance of the
app. Also fonts.

/public/
Next.js will automatically serve the contents of the folder named “public” without any
changes, which is useful for serving the static files (such as my website’s logo).

/utils/
Finally, I need a place to keep the miscellaneous files that don’t neatly fit into the
structure of my app, such as scripts that retrieve cookies and resize images.

Setting up the project with Next.js and TypeScript
The starter project was generated with Next.js [4.1]. This framework helps with the
server-side rendering, routing, and provides the necessary setup for compiling the
code. It supports TypeScript, to enable it I needed to install the TypeScript-related
libraries, and change the file extensions from “.js” and “.jsx” to “.ts” and “.tsx”. These
files will be automatically transpiled into regular JavaScript understandable by the
browsers.

All the main pages on the website take advantage of the Next.js’ file-based routing
[4.2]. When the user types a URL into the address bar and visits one of the pages on
my website, the files contained in the “/pages/” folder determine which part of the app
will be accessed depending on the path the user has entered. For example, when the
user visits “https://sketchclub.io/post/example” page, Next.js will use the
/pages/post/[postSlug].tsx file to generate the page.

The app is broken into multiple nested React components. The components
determine all the functional elements of the app, and are responsible for rendering
posts, images, login and submit forms, buttons, and so on. The components are
made out of other components. For example the Browse page renders a grid of
PostCard components, which in turn uses the SquareImage and Modal components
to provide its functionality.

When the page loads, it renders one of the React components imported from the
“/components/” folder. Most of the pages are wrapped in the Layout component,
which contains the elements that are shared across pages (such as header with a
menu and a search bar).

Apollo Set Up

In order to connect to the server and be able to query and manipulate the data with
the GraphQL API I needed to set up and configure Apollo Client [4.3]. That is done in
“/apollo/client.ts”, which contains the configuration related to passing the data
between the server and the client.

Apollo Client is configured using Apollo Links library. Apollo Links enable the
developer to customize the data flow between the client and the server . Before being
passed to the server, the data is being passed through the chain of links - functions
that can modify the request or perform certain actions based on the request [4.4].

That includes error logging (which enables me to see the GraphQL errors in the
browser), attaching the cookies along with every request (which is used in my
Authentication system), and modifying the request to avoid the CORS errors.

In the same file I am setting up Apollo Cache [4.5] - a way to manage the global state
of the app, to store the server responses (so that the app could avoid making more
unnecessary requests), which makes the app more responsive and saves on
bandwidth (because once the request has been made, the data is saved in the
browser and doesn’t need to be fetched again).

Once the client is set up, I wrap all of my app’s components (in the _app.tsx file) in
the Apollo Provider, which enables the components to access the data fetched by
Apollo. With that, my components are able to run Queries and Mutations.

Queries, Mutations, and Actions
In the “/apollo/” folder there are multiple files containing the GraphQL queries, which
are used to define the information my components will need to fetch from the server.
They contain lists of variables I need to pass to the server (for example, ones
responsible for searching through and filtering the posts), and the lists of fields I need
the server to return in response. This is that data that will be used when rendering my
components.

For every query there’s an action. Actions wrap the queries into custom React Hooks
(React’s way of managing state inside of the functional components, more on that in
the “Modal Component” section), the purpose of that is to keep my code clean and
concise. Actions pass all the necessary variables and parameters to the queries, and
can be used in the Components to request all the necessary data in one line of code.

To see a good example of how this works, consider the “GET_POSTS” query (you
can see it in “/apollo/postQueries.ts”). This query is responsible for fetching the posts
that will be displayed in the Browse, User Profile, and other pages. It accepts a long
list of variables which enable me to filter posts by username, tag, search query, and
to implement pagination. It returns all the data necessary for rendering the posts.

This query is wrapped into an action (“useGetPosts()” function inside of the
“/apollo/postsActions.ts” file). This action is a React Hook. It extracts the necessary
information from the router (which tells it which page the user is in, and all the
parameters that can be passed in the address bar, such as search query), and
passes it to the GET_POSTS query as variables.

The benefits of creating this hook are apparent once you realize that I need to use it
in multiple pages - profile page, tag page, topic page, and index page. All of them
use this hook to fetch the necessary posts, all filtered in ways specific to each page,
using just one line of code (see the first line in the “browse()” function in the
“index.tsx” file). This makes the code much more clear, concise, and convenient to
write.

Apollo Cache

As described above, Apollo can cache the results of the queries I’m making, so that
as the user clicks through the pages, the data never needs to be fetched more than
once (if the users has already visited a certain page and then visits it again, its data
will be loaded from the cache, instead of making a separate request to the server).

The downside of that is that updating the cache needs to be done manually. Luckily,
Apollo makes it very easy. As you can see in the actions files (such as
“postsActions.ts”), whenever I run a mutation (a function that updates the data on
server, for example when a user creates a new post), I can pass it a “refetchQueries''
parameter [4.6]. This parameter enables me to specify which queries need to be

refetched after the mutation is executed. For instance, once the user creates a post
by running the “CREATE_POST” query, I’m telling apollo to automatically update the
“GET_POSTS” query - which will fetch the most recent posts from the server
(including the newly created one), and update the cache. As a result, the new post is
visible in the app as soon as the user creates it (they don’t need to manually reload
the page).

Server-Side Rendering

In order to achieve the server-side rendering, I need to tell Next.js how to fetch the
necessary data while it's rendering the page on the server. Once the data has been
fetched, Next.js will generate the HTML and send it to the client. On the client, the
HTML will be “hydrated” - the HTML event handlers will be attached to the static
HTML that was returned from the server, making it dynamic and interactive.

Next.js has special functions that enable Server-Side rendering. Next.js can use
“getStaticProps()” function in order to generate pages when the website is being built,
this is a great fit for static websites where the content doesn’t change too often [4.7] -
it speeds up the content delivery significantly (because all the server needs to do is
send the pre-generated static files), but this approach is not very suitable for my
website, since the content is meant to change often, and I want the posts to be
visible as soon as the users submit them (without requiring me to rebuild the website
every time).

On the other hand, “getServerSideProps()” function will be called on every request -
when the client requests the page, this function will fetch the data from the API, and
use it to render the HTML page that will be sent to the client [4.8].

Unfortunately, since this is happening on the server side, I was unable to use the
same hooks that run queries inside the React components (more on how that works
in the Apollo Setup section above) and fetch the data on the client.

I need to be able to run queries that provide the initial data that will populate the
pre-rendered pages, and to do that I needed to create a separate function
(“/apollo/fetchQuery.ts”) that sets up a simple Apollo Client when the page is being
rendered on server, and fetches all the necessary data in a way that is compatible
with this process.

How React Components Work (Modal Component Example)

Most of the React components are set up and work in a similar way. I will use the
Modal component (‘/components/Elements/Modal.tsx’) as an example, because it
incorporates all the interesting things I have learned about using React during this
project - specifically, React Hooks and React Context.

Context is a new feature of React, which provides a convenient way to make a piece
of data globally accessible by all the components within the app [4.9]. I am creating
the contexts for all the pieces of data that need to be available across multiple
components (such as whether the user is logged in, or which modal is currently
open). I combine all the contexts into one CombinedContext (for the purpose of
simplicity and clarity), which is later used in the _app.js to pass the data to all the
components in my application.

React Hooks is another new feature, it is a way to use state (and other features that
used to be available only on Class components) in React’s functional components
[4.10]. The ‘useState()’ hook is the most commonly used one, it allows me to create a
variable that will be kept in the component’s state, and a function that will be used to
update it. Every time the state is updated, the component will rerender based on the
new value of the state variable.

Using these two features together, I create Modal Context (‘ModalContext.tsx’), which
uses the ‘useState()’ hook to create a ‘modal’ variable, which contains a string that
determines which modal is currently open (it’ll be empty if no modal is open). I have
also created the ‘toggleModal()’ function, which will update the ‘modal’ variable based
on what model I want to open or close.

Both the ‘modal’ variable and the ‘toggleModal()’ function are passed down to all the
app’s components using context. All the contexts I need are combined together in the
‘CombinedContext.tsx’, which is wrapped around all the other components in
‘_app.tsx’, giving them access to all the data I want to make available.

Now, the Modal component (a component used to render all the modals in the app)
can plug into the context, and use the ‘modal’ variable I have established to decide
whether or not this modal needs to be rendered. All the content I want to display
inside of the modal is passed to it as its children, which abstracts away the modal
functionality from the actual content I want to render inside of it.

Finally, when I want to show a specific modal (for example when the user clicks a
“Login” button in the ‘Header.tsx’), I simply attach the ‘toggleModal()’ function to the
button’s ‘onClick()’ event. The user clicks on a button, ‘toggleModal()’ function uses a
hook to update the value of the ‘modal’ variable in the Modal Context, which lets the
‘Modal’ component know that it should be rendered.

Other components are set up in a similar way, using similar functionality to make the
app responsive, interactive, and fun to use.

Deployment
Here’s how the deployment architecture of this project looks like:

Frontend Server on Vercel

The frontend server is running on Vercel [5.1] - a free and convenient platform built
by the developers of Next.js and optimized for hosting of Next.js apps. It was an
obvious choice for hosting the frontend, since this platform makes the process very
convenient and straightforward.

The main benefit of Vercel is that they’re using a “serverless” approach [5.2] - the
developers don’t have to pay a fixed price for a constantly running server . Instead,
the serverless functions are being ran only when necessary - whenever the user
requests a page, the Vercel platform will run a serverless Next.js function required to
generate the page on demand. That approach is cheaper, scaling of the application
can be handled by Vercel automatically, and it doesn’t require me to manage the
server.

As a side benefit, it comes with CI/CD (continuous integration and continuous
deployment) that is set up automatically. As soon as I push my code to GitHub,
Vercel will automatically build it and deploy the new version, which is very convenient
[5.3].

Technically, deployment to Vercel isn’t very difficult, the only requirement was that the
API should be served over https, which I intended to do anyway, and will discuss
further below.

Backend API Server on DigitalOcean

In order to run my GraphQL API, I needed to set up my own linux server. I chose
DigitalOcean to host my project because it is cheap, convenient to use, and I worked
with it on my previous projects.

Setting up the ubuntu server was relatively straightforward - I needed to install the
necessary packages (git, node, nginx, and so on), clone my git repository, install the
npm packages, and finally build and run my backend code [5.4]. In order to run the
backend code constantly, as a background process I have used pm2 - a convenient
node package designed for managing daemon processes [5.5].

The challenging part was to learn how to acquire the certificates, and make my API
available over HTTPS.

Serving the API over HTTPS

First, I needed to point the subdomain on which I want to serve the api
(api.sketchdaily.io) to the server that’s running my backend code. To accomplish that
I have created an A record in the Vercel’s DNS configuration, and pointed it to the IP
of my DigitalOcean server.

Once it was done, I needed to acquire the SSL certificates. To do that, I have used
Let’s Encrypt - a certificate authority that can provide SSL certificates for free [5.6].

I have used certbot (a tool provided by Let’s Encrypt) to automatically acquire the
certificates, and configured Nginx to use these certificates, and connect all the
requests to the port where I’m running my API. I had to set up a cron job to renew
these certificates automatically, which will ensure that they will be updated every
month.

While setting up the deployed project, I ran into an issue that took me a long time to
resolve - despite setting everything up according to the documentation, I kept
encountering the CORS (Cross-Origin Resource Sharing) errors [5.7] every time my
client deployed on vercel was making requests to the API. It took quite a long time to
solve, since it was impossible to test locally (everything worked on my laptop).
Luckily, the solution was simple - it involved tweaking an obscure setting in the Apollo
Client, as described in this issue [5.8].

I also needed to make sure that the Authorization JWT token is sent through
headers, not cookies. You can see both of the tweaks in ‘/apollo/client.ts’ on the
frontend app. These solutions are not well documented and finding them required a
lot of experimentation, but that’s just a drawback of using technologies that are still
being developed.

Finally, I needed to configure Nginx to provide the valid certificates in order to serve
my GraphQL endpoint over https. Since certificates and keys were automatically
generated for me by certbot, all I needed to do was configure ‘/config/nginx.conf’
such that all the traffic is using https, is redirected to the port where my API is being
served, and pass the paths to the certificates to the config.

PostgreSQL server with AWS RDS

For hosting my PostgreSQL database, I chose AWS RDS (Relational Database
Service). It is a convenient way to host a PostgresQL database in the cloud for free
(on the free tier) [5.9].

The setup was pretty straightforward - I made an account, created a public database
instance, and used the link provided to me to connect to the database from Prisma.

As the link must be secure, it is passed to using environment variables - I have a
‘.env’ file which contains the secret variables necessary for the app to run, it is not
committed to github to make sure that secret passwords stay secret. The local ‘.env’
file on my laptop contains the variables I use in development (connecting me to the
PostgreSQL database running on my laptop), and the ‘.env’ file I’m using in
production connects me to the database running on AWS RDS.

There isn’t much else to say on this subject - AWS RDS is an established technology,
they’ve made it as simple as possible to use, and everything worked just as
expected, without the need for any extra research or creative workarounds. It was
nice to use something stable and reliable for a change, and I’ll definitely use it in my
future projects as well.

Image Hosting with AWS S3

The image upload process is described in the “Scalable Image Uploads” section,
here I will just talk about the AWS S3 set up. The biggest challenge was to set up the
permissions using AWS Identity and Access Management (IAM) [5.10], which
introduced me to some unfamiliar concepts.

It’s very important to keep the S3 bucket secure, because if someone else gains
access to it and uploads their files to my account, it can be very expensive and
dangerous (because the attacker might upload something illegal or harmful).

To secure the S3 bucket, I am generating the secret access keys using IAM. IAM
gives me a lot of flexibility and control over the permissions I want to grant to the
person holding these credentials.

IAM has two types of records - Policies and Users [5.11]. Policies are assigned to the
User and describe what the user can do. This system is extremely flexible, and gives
me a very granular control over permissions. I have created a Policy that specifically
enables a person to only upload images to my S3 bucket, and assigned it to a new
IAM user (who’s credentials my server will use to request the pre-signed urls).

Since this policy has very limited rights and works only with one S3 bucket, that
ensures that even if someone does get access to the keys, the scope of the damage
they can do to my AWS account is limited.

One more security measure that is available is restricting the sources from which
AWS will accept the uploads to only my website. That way, a malicious person wants
to allow the users of their website to upload the images, they won’t just be able to
request pre-signed urls from my server, and make uploads.

Each S3 bucket has a CORS configuration section [5.12], customized using JSON
config written in a specific format (see ‘/config/bucket-cors-config.json’). I have
configured it to only accept the POST requests from my domain.

Finally, S3 buckets have their own permission policies which control who can view
the content inside of the bucket. By default, it is restricted to the person who has
created a bucket, but in my case, I needed to relax them and make the images
available publicly (because that’s the purpose of my app, for everyone on the internet
to be able to view the uploaded images). You can see the policy I’ve created in
‘/config/bucket-access-policy.json’.

With that, my deployment structure is complete - frontend on Vercel, backend on
Digital Ocean, Postgres on AWS RDS, and file storage with AWS S3.

Evaluation
Finally, it was time to launch and evaluate my app. I have done that in two ways - I
have evaluated the performance using Google’s Page Speed Insights tool, and I
have evaluated the user experience by sharing the website with some artists and
asking them to fill in a short survey.

Performance

To evaluate the performance of the app, I have used Google’s Page Speed Insights
[6.1] - it is a standard tool that helps people to estimate how quickly their website
loads and how responsive it is.

At first, the score was pretty disappointing:

This tool provides some suggestions that help the developer to analyze and reduce
the bottlenecks.

In order to improve the score (and therefore, the page speed), I have implemented
google's suggestions. First, I have converted all the images into a ‘.webp’ format - a
modern lossless image compression format that results in much smaller image sizes
compared to ‘.png’. I have also made sure to update the code in ‘resizeImage.ts’ to
automatically generate webp files in the browser, before image upload.

In addition to that, I had to tweak the ‘Cache-Control’ settings in the AWS S3 bucket
in order to keep the images cached for a longer period of time. Since the images on
my website are never updated (when the user wants to change the image, they just
delete the old one and upload a new one, which will have a different url), it was safe
to set the cache age very long (1 year).

After implementing the suggestions, I have managed to achieve a score I am happy
with:

A different tool (GTmetrix) gave me a score of 96%, which is also very good. The
mobile test score (60%) is acceptable but still leaves much to be desired. The biggest
improvement that could be made is to “Reduce initial server response time”. It is my
understanding that server response time depends mainly on the performance of
serverless functions on Vercel, and the time it takes to contact the database.

Building my own frontend server in the same region as the backend and database
servers could improve this metric, and perhaps some other experiments with network
architecture and the project build settings could potentially improve its performance,
but doing that is out of scope of this project. As of now, I am quite happy with the
results, the most important bottlenecks have been fixed, and more minor tweaks can
be done at a later date.

User Feedback

While I was working on the app, I started a Discord community for Digital Artists, to
build the audience and get to know people who could leave feedback on my app
once it’s ready.

I have built a survey (Appendix B) with Google Forms and used it to determine
people’s response to the app. I have shared the survey in my discord community,
asked people to try using the app and fill in the survey.

I am happy to report that the user feedback (Appendix C) was largely positive. The
sample size was pretty small (10 people), but everyone who has participated in the
survey seemed to have liked my app.

Most people rated my website 5/5 in terms of usability, responsiveness, and
usefulness. Users did not report experiencing any bugs or issues, and seemed to
have no problem using the website.

When asked to suggest changes and improvements, users have left some pretty
useful recommendations. People wanted more options for filtering and organizing the
weekly topics, they wanted to be able to submit their own weekly topics, they wanted
to have more personalization and customization options (artists want to have more
control over their portfolio profiles).

These are very useful and interesting ideas, many of them can be added to the
roadmap and implemented in the future.

At the same time, most of these are “nice to have” features, not something urgent or
essential for the core user experience - so it seems like I have managed to
successfully implement the core functionality, and now what’s left is gradual and
incremental improvement of this project. Adding functionality, talking to users, and
growing our community.

Conclusions
My goal with this project was to explore the modern web development technologies
and become a better full-stack web developer. I wanted to build an application that is
fast, beautifully designed, and easy to use.

In the process of building this website, I have learned a lot about React (especially its
new features like Hooks and Context), Next.js, Apollo, GraphQL, Nexus, and Prisma.
I have never used most of these technologies before (aside from React), and it was a
great opportunity to learn new things and get up to speed with the cutting-edge
advances in web development. Using this stack turned out to be quite complicated,
much more difficult than the technologies I’m used to (Node/Express), but very
rewarding.

It is clear that most of the advantages of these technologies are more apparent on
large scale projects, complicated software built by teams of developers. However, I
have found that once you get used to this stack and understand how to use it, it can
provide a lot of power and flexibility to the personal projects as well.

React enables me to build any interactive web app I can imagine, Next provides a
powerful framework for creating a full-stack web application and rendering it on the
server, and Apollo/Nexus/Prisma allow me to create a powerful, flexible,
well-organized (but a little too verbose) GraphQL API.

Having said that, I don’t think that all the added development time and complexity is
worth it when it comes to working on really small projects and prototypes. In the
future, I will definitely use this stack for projects that are big, complex, long-term, and
require collaboration with other people. But for small apps and prototypes, I will
probably stick with REST APIs and non-server-side-rendered React apps (since SSR
is one of the major causes of the increased complexity).

Using AWS S3 for file storage and AWS RDS for database storage proved to be
extremely powerful and, now that I know how to do that, quite easy. They will be my
tools of choice going forward. Hosting the frontend on Vercel was a very pleasant
and seamless experience, I will use it in my future projects as well.

I still have a lot to learn about TypeScript, since I only took advantage of its most
basic features. I will need to spend more time exploring the advantages of using strict
typing to ensure type safety (which I couldn’t do during this project since that
would’ve added a lot of complexity, slowed down the development, and made the
already tough learning curve much steeper). It is a promising and interesting
technology, and it is worth exploring in more depth.

Designing this app in Figma was also a valuable and interesting experience, this tool
turned out to be surprisingly powerful, flexible, and easy to use. The ability to quickly
prototype the design and make tweaks to it without needing to rewrite the code is
extremely helpful and valuable. I will definitely use it in my future projects.

The skills I have learned while building this project will definitely be very helpful in my
job search, and I hope they will lead to an interesting and successful career.

References
1. Tech Stack review and Technical Challenges

[1.1] ReactJS - Getting Started
https://reactjs.org/docs/getting-started.html
[Accessed 14 Aug. 2021]

[1.2] What is Server-Side Rendering? Definition and FAQs.
https://www.omnisci.com/technical-glossary/server-side-rendering
[Accessed 14 Aug. 2021]

[1.3] Next.js by Vercel - The React Framework.
https://nextjs.org/
[Accessed 14 Aug. 2021]

[1.4] Client Side Rendering Vs Server Side Rendering in React js & Next js.
https://yudhajitadhikary.medium.com/client-side-rendering-vs-server-side-rendering-in
-react-js-next-js-b74b909c7c51
[Accessed 15 Aug. 2021]

[1.5] GraphQL: A query language for APIs.
https://graphql.org/
[Accessed 15 Aug. 2021]

[1.6] GraphQL vs REST - A comparison.
https://www.howtographql.com/basics/1-graphql-is-the-better-rest/
[Accessed 16 Aug. 2021]

[1.7] The Apollo GraphQL platform.
https://www.apollographql.com/docs/intro/platform/
[Accessed 16 Aug. 2021]

[1.8] GraphQL Schemas and Types
https://graphql.org/learn/schema/
[Accessed 16 Aug. 2021]

[1.9] Code-First, Type-Safe, GraphQL Schema Construction.
https://github.com/graphql-nexus/nexus
[Accessed 17 Aug. 2021]

[1.10] What is Prisma? (Overview).
https://www.prisma.io/docs/concepts/overview/what-is-prisma
[Accessed 17 Aug. 2021]

[1.11] Prisma Studio
https://www.prisma.io/studio
[Accessed 17 Aug. 2021]

https://reactjs.org/docs/getting-started.html
https://www.omnisci.com/technical-glossary/server-side-rendering
https://nextjs.org/
https://yudhajitadhikary.medium.com/client-side-rendering-vs-server-side-rendering-in-react-js-next-js-b74b909c7c51
https://yudhajitadhikary.medium.com/client-side-rendering-vs-server-side-rendering-in-react-js-next-js-b74b909c7c51
https://graphql.org/
https://www.howtographql.com/basics/1-graphql-is-the-better-rest/
https://www.apollographql.com/docs/intro/platform/
https://graphql.org/learn/schema/
https://github.com/graphql-nexus/nexus
https://www.prisma.io/docs/concepts/overview/what-is-prisma
https://www.prisma.io/studio

[1.12] PostgreSQL database connector (Reference).
https://www.prisma.io/docs/concepts/database-connectors/postgresql
[Accessed 17 Aug. 2021]

[1.13] Smallcombe, M. Mongodb vs. PostgresQL: Compare Database Structure.
https://www.xplenty.com/blog/mongodb-vs-postgresql/
[Accessed 18 Aug. 2021]

[1.14] TypeScript for JavaScript Programmers
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
[Accessed 18 Aug. 2021]

[1.15] TypeScript pros: what makes TypeScript a good fit for large projects
https://www.altexsoft.com/blog/typescript-pros-and-cons/
[Accessed 18 Aug. 2021]

[1.16] Feng, R. JavaScript to Typescript Migration Benefits.
https://www.appdynamics.com/blog/engineering/the-benefits-of-migrating-from-javasc
ript-to-typescript/
[Accessed 18 Aug. 2021]

[1.17] Teese, B. TypeScript, Flow and the importance of toolchains over tools.
https://shinesolutions.com/2017/01/05/typescript-flow-and-the-importance-of-toolchai
ns-over-tools/
[Accessed 18 Aug. 2021]

[1.18] Amazon Web Services, Cloud Object Storage.
https://aws.amazon.com/s3/
[Accessed 18 Aug. 2021]

[1.19] Amazon RDS for PostgreSQL.
https://aws.amazon.com/rds/postgresql/
[Accessed 18 Aug. 2021]

[1.20] Deployment | Next.js.
https://nextjs.org/docs/deployment
[Accessed 18 Aug. 2021]

[1.21] DigitalOcean Droplets.
https://www.digitalocean.com/products/droplets/
[Accessed 18 Aug. 2021]

[1.22] Figma for Frontend Developers & Designers.
https://www.figma.com/figma-for-frontend-developers/
[Accessed 18 Aug. 2021]

[1.23] Components, styles, and shared library best practices.
https://www.figma.com/best-practices/components-styles-and-shared-libraries/
[Accessed 18 Aug. 2021]

https://www.prisma.io/docs/concepts/database-connectors/postgresql
https://www.xplenty.com/blog/mongodb-vs-postgresql/
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.altexsoft.com/blog/typescript-pros-and-cons/
https://www.appdynamics.com/blog/engineering/the-benefits-of-migrating-from-javascript-to-typescript/
https://www.appdynamics.com/blog/engineering/the-benefits-of-migrating-from-javascript-to-typescript/
https://shinesolutions.com/2017/01/05/typescript-flow-and-the-importance-of-toolchains-over-tools/
https://shinesolutions.com/2017/01/05/typescript-flow-and-the-importance-of-toolchains-over-tools/
https://aws.amazon.com/s3/
https://aws.amazon.com/rds/postgresql/
https://nextjs.org/docs/deployment
https://www.digitalocean.com/products/droplets/
https://www.figma.com/figma-for-frontend-developers/
https://www.figma.com/best-practices/components-styles-and-shared-libraries/

2. Functionality and UI/UX Design

[2.1] Component architecture in Figma
https://www.figma.com/best-practices/component-architecture/
[Accessed 19 Aug. 2021]

[2.2] Andrew, M. Creating a design system in Figma: a practical guide.
https://uxdesign.cc/creating-a-design-system-in-figma-cbd01b0d2424
[Accessed 19 Aug. 2021]

[2.3] Figma Design File
https://www.figma.com/file/mFcOSSRfhBIdiwDrf7kk7G/Sketch-Club
[Accessed 19 Aug. 2021]

3. Backend

[3.1] Choosing an Apollo Server package
https://www.apollographql.com/docs/apollo-server/integrations/middleware/
[Accessed 19 Aug. 2021]

[3.2] Nexus Schema
https://nexusjs.org/docs/guides/schema
[Accessed 19 Aug. 2021]

[3.3] The Problems of "Schema-First" GraphQL Server Development
https://www.prisma.io/blog/the-problems-of-schema-first-graphql-development-x1mn4
cb0tyl3
[Accessed 19 Aug. 2021]

[3.4] Nexus objectType
https://nexusjs.org/docs/api/object-type
[Accessed 19 Aug. 2021]

[3.5] Nexus Mutations
https://nexusjs.org/docs/getting-started/tutorial/chapter-adding-mutations-to-your-api
[Accessed 20 Aug. 2021]

[3.6] Writing Query Resolvers.
https://www.apollographql.com/docs/tutorial/resolvers/
[Accessed 20 Aug. 2021]

[3.7] Type-Safe GraphQL Servers.
https://medium.com/open-graphql/type-safe-graphql-servers-3922b8a70e52
[Accessed 20 Aug. 2021]

[3.8] What is Prisma?
https://www.prisma.io/docs/concepts/overview/what-is-prisma
[Accessed 20 Aug. 2021]

[3.9] GraphQL Shield - A GraphQL tool to ease the creation of permission layers.
https://github.com/maticzav/graphql-shield
[Accessed 20 Aug. 2021]

https://www.figma.com/best-practices/component-architecture/
https://uxdesign.cc/creating-a-design-system-in-figma-cbd01b0d2424
https://www.figma.com/file/mFcOSSRfhBIdiwDrf7kk7G/Sketch-Club
https://www.apollographql.com/docs/apollo-server/integrations/middleware/
https://nexusjs.org/docs/guides/schema
https://www.prisma.io/blog/the-problems-of-schema-first-graphql-development-x1mn4cb0tyl3
https://www.prisma.io/blog/the-problems-of-schema-first-graphql-development-x1mn4cb0tyl3
https://nexusjs.org/docs/api/object-type
https://nexusjs.org/docs/getting-started/tutorial/chapter-adding-mutations-to-your-api
https://www.apollographql.com/docs/tutorial/resolvers/
https://medium.com/open-graphql/type-safe-graphql-servers-3922b8a70e52
https://www.prisma.io/docs/concepts/overview/what-is-prisma
https://github.com/maticzav/graphql-shield

[3.10] How Hacker News Ranking Algorithm Works.
https://medium.com/hacking-and-gonzo/how-hacker-news-ranking-algorithm-works-1
d9b0cf2c08d
[Accessed 20 Aug. 2021]

[3.11] Introduction to JSON Web Tokens
https://jwt.io/introduction
[Accessed 20 Aug. 2021]

[3.12] Grider S. Advanced React and Redux.
https://www.udemy.com/course/react-redux-tutorial/
[Accessed 20 Aug. 2021]

[3.13] Grider S. Node JS: Advanced Concepts.
https://www.udemy.com/course/advanced-node-for-developers/
[Accessed 20 Aug. 2021]

[3.14] Generate a presigned URL in modular AWS SDK for JavaScript.
https://aws.amazon.com/blogs/developer/generate-presigned-url-modular-aws-sdk-ja
vascript/
[Accessed 20 Aug. 2021]

[3.15] Uploading to Amazon S3 directly from a web or mobile application
https://aws.amazon.com/blogs/compute/uploading-to-amazon-s3-directly-from-a-web
-or-mobile-application/
[Accessed 20 Aug. 2021]

[3.16] React Image File Resizer
https://www.npmjs.com/package/react-image-file-resizer
[Accessed 20 Aug. 2021]

4. Frontend

[4.1] Create a Next.js App.
https://nextjs.org/learn/basics/create-nextjs-app
[Accessed 21 Aug. 2021]

[4.2] File-system Based Router.
https://nextjs.org/docs/routing/introduction
[Accessed 21 Aug. 2021]

[4.3] Set up Apollo Client
https://www.apollographql.com/docs/tutorial/client/
[Accessed 21 Aug. 2021]

[4.4] Apollo Link overview
https://www.apollographql.com/docs/react/api/link/introduction/
[Accessed 21 Aug. 2021]

https://medium.com/hacking-and-gonzo/how-hacker-news-ranking-algorithm-works-1d9b0cf2c08d
https://medium.com/hacking-and-gonzo/how-hacker-news-ranking-algorithm-works-1d9b0cf2c08d
https://jwt.io/introduction
https://www.udemy.com/course/react-redux-tutorial/
https://www.udemy.com/course/advanced-node-for-developers/
https://aws.amazon.com/blogs/developer/generate-presigned-url-modular-aws-sdk-javascript/
https://aws.amazon.com/blogs/developer/generate-presigned-url-modular-aws-sdk-javascript/
https://aws.amazon.com/blogs/compute/uploading-to-amazon-s3-directly-from-a-web-or-mobile-application/
https://aws.amazon.com/blogs/compute/uploading-to-amazon-s3-directly-from-a-web-or-mobile-application/
https://www.npmjs.com/package/react-image-file-resizer
https://nextjs.org/learn/basics/create-nextjs-app
https://nextjs.org/docs/routing/introduction
https://www.apollographql.com/docs/tutorial/client/
https://www.apollographql.com/docs/react/api/link/introduction/

[4.5] Configuring the Apollo Client cache
https://www.apollographql.com/docs/react/caching/cache-configuration/
[Accessed 21 Aug. 2021]

[4.6] When To Use Refetch Queries in Apollo Client
https://www.apollographql.com/blog/apollo-client/caching/when-to-use-refetch-querie
s/
[Accessed 21 Aug. 2021]

[4.7] Next.js Data Fetching - getStaticProps()
https://nextjs.org/docs/basic-features/data-fetching#getstaticprops-static-generation
[Accessed 21 Aug. 2021]

[4.8] Next.js Data Fetching - getServerSideProps()
https://nextjs.org/docs/basic-features/data-fetching#getserversideprops-server-side-r
endering
[Accessed 21 Aug. 2021]

[4.9] React Context
https://reactjs.org/docs/context.html
[Accessed 21 Aug. 2021]

[4.10] React Hooks
https://reactjs.org/docs/hooks.html
[Accessed 21 Aug. 2021]

5. Deployment

[5.1] Vercel
https://vercel.com/about
[Accessed 21 Aug. 2021]

[5.2] Serverless Functions on Vercel
https://vercel.com/docs/serverless-functions/introduction
[Accessed 21 Aug. 2021]

[5.3] Automatic Deployments with Vercel for GitLab
https://vercel.com/guides/getting-started-with-vercel-for-gitlab
[Accessed 21 Aug. 2021]

[5.4] DigitalOcean - Initial Server Setup with Ubuntu 20.04.
https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-20-
04
[Accessed 21 Aug. 2021]

[5.5] Advanced, Production Process Manager for Node.js.
https://pm2.keymetrics.io/
[Accessed 21 Aug. 2021]

https://www.apollographql.com/docs/react/caching/cache-configuration/
https://www.apollographql.com/blog/apollo-client/caching/when-to-use-refetch-queries/
https://www.apollographql.com/blog/apollo-client/caching/when-to-use-refetch-queries/
https://nextjs.org/docs/basic-features/data-fetching#getstaticprops-static-generation
https://nextjs.org/docs/basic-features/data-fetching#getserversideprops-server-side-rendering
https://nextjs.org/docs/basic-features/data-fetching#getserversideprops-server-side-rendering
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://vercel.com/about
https://vercel.com/docs/serverless-functions/introduction
https://vercel.com/guides/getting-started-with-vercel-for-gitlab
https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-20-04
https://pm2.keymetrics.io/

[5.6] Let’s Encrypt - a nonprofit Certificate Authority.
https://letsencrypt.org/
[Accessed 21 Aug. 2021]

[5.7] CORS errors
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS/Errors
[Accessed 21 Aug. 2021]

[5.8] How to avoid "self signed certificate" error.
https://github.com/apollographql/apollo-link/issues/229
[Accessed 21 Aug. 2021]

[5.9] Amazon RDS for PostgreSQL
https://aws.amazon.com/rds/
[Accessed 21 Aug. 2021]

[5.10] AWS Identity & Access Management.
https://aws.amazon.com/iam/
[Accessed 21 Aug. 2021]

[5.11] Policies and Permissions - AWS Identity and Access Management.
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
[Accessed 21 Aug. 2021]

[5.12] CORS configuration - Amazon Simple Storage Service.
https://docs.aws.amazon.com/AmazonS3/latest/userguide/ManageCorsUsing.html
[Accessed 21 Aug. 2021]

6. Evaluation

[6.1] PageSpeed Insights.
https://developers.google.com/speed/pagespeed/insights/
[Accessed 22 Aug. 2021]

[6.2] GTmetrix - Website Speed and Performance Optimization.
https://gtmetrix.com/
[Accessed 22 Aug. 2021]

[6.3] Sketch Club Survey
https://docs.google.com/forms/d/e/1FAIpQLScPNwEEQIzpSI5ZYQWm_0QPO1NcU
U8y-GuwSw74A2A2Q5QSAw/viewform
[Accessed 22 Aug. 2021]

https://letsencrypt.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS/Errors
https://github.com/apollographql/apollo-link/issues/229
https://aws.amazon.com/rds/
https://aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/ManageCorsUsing.html
https://developers.google.com/speed/pagespeed/insights/
https://gtmetrix.com/
https://docs.google.com/forms/d/e/1FAIpQLScPNwEEQIzpSI5ZYQWm_0QPO1NcUU8y-GuwSw74A2A2Q5QSAw/viewform
https://docs.google.com/forms/d/e/1FAIpQLScPNwEEQIzpSI5ZYQWm_0QPO1NcUU8y-GuwSw74A2A2Q5QSAw/viewform

Appendix
A. Original Mockups

Browse Sketches

View Sketch

Auth System

Edit Sketch

B. Survey
Survey
https://forms.gle/KxPtaZ1WTUGYQAp27

https://forms.gle/KxPtaZ1WTUGYQAp27

C. Survey Results
Survey results:

D. The Final Project and the Code

The project is deployed at
https://sketchclub.io/
(you can try using and browsing the website)

The code is available at:
https://git-teaching.cs.bham.ac.uk/mod-msc-proj-2020/vxp032

To run the project locally, clone the repo, then:

1. In “/backend” folder:
Make sure the npm and node are installed correctly.
Set the environment variables (in .env file, using env.sample as an example)
Install the packages:

npm i
Generate prisma client:

npm run generate
Generate the database based on the schema:

npm run prisma:migrate
Seed the database with the initial data:

npm run seed
Run the project in dev mode:

npm run dev
Set up the script that updates the post ranks:

npm run startRankPostsJob

2. In “/frontend” folder run:
Install the packages:

npm i
Run the project in dev mode:

npm run dev

3. Visit:
http://localhost:3020/

https://sketchclub.io/
https://git-teaching.cs.bham.ac.uk/mod-msc-proj-2020/vxp032
http://localhost:3020/

